(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(X)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
rm(N, nil) → nil
rm(N, add(M, X)) → ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) → rm(N, X)
ifrm(false, N, add(M, X)) → add(M, rm(N, X))
purge(nil) → nil
purge(add(N, X)) → add(N, purge(rm(N, X)))

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
eq(s(X), s(Y)) →+ eq(X, Y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [X / s(X), Y / s(Y)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

eq(0', 0') → true
eq(0', s(X)) → false
eq(s(X), 0') → false
eq(s(X), s(Y)) → eq(X, Y)
rm(N, nil) → nil
rm(N, add(M, X)) → ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) → rm(N, X)
ifrm(false, N, add(M, X)) → add(M, rm(N, X))
purge(nil) → nil
purge(add(N, X)) → add(N, purge(rm(N, X)))

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
eq(0', 0') → true
eq(0', s(X)) → false
eq(s(X), 0') → false
eq(s(X), s(Y)) → eq(X, Y)
rm(N, nil) → nil
rm(N, add(M, X)) → ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) → rm(N, X)
ifrm(false, N, add(M, X)) → add(M, rm(N, X))
purge(nil) → nil
purge(add(N, X)) → add(N, purge(rm(N, X)))

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
rm :: 0':s → nil:add → nil:add
nil :: nil:add
add :: 0':s → nil:add → nil:add
ifrm :: true:false → 0':s → nil:add → nil:add
purge :: nil:add → nil:add
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_nil:add3_0 :: nil:add
gen_0':s4_0 :: Nat → 0':s
gen_nil:add5_0 :: Nat → nil:add

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
eq, rm, purge

They will be analysed ascendingly in the following order:
eq < rm
rm < purge

(8) Obligation:

TRS:
Rules:
eq(0', 0') → true
eq(0', s(X)) → false
eq(s(X), 0') → false
eq(s(X), s(Y)) → eq(X, Y)
rm(N, nil) → nil
rm(N, add(M, X)) → ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) → rm(N, X)
ifrm(false, N, add(M, X)) → add(M, rm(N, X))
purge(nil) → nil
purge(add(N, X)) → add(N, purge(rm(N, X)))

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
rm :: 0':s → nil:add → nil:add
nil :: nil:add
add :: 0':s → nil:add → nil:add
ifrm :: true:false → 0':s → nil:add → nil:add
purge :: nil:add → nil:add
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_nil:add3_0 :: nil:add
gen_0':s4_0 :: Nat → 0':s
gen_nil:add5_0 :: Nat → nil:add

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:add5_0(0) ⇔ nil
gen_nil:add5_0(+(x, 1)) ⇔ add(0', gen_nil:add5_0(x))

The following defined symbols remain to be analysed:
eq, rm, purge

They will be analysed ascendingly in the following order:
eq < rm
rm < purge

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

Induction Base:
eq(gen_0':s4_0(0), gen_0':s4_0(0)) →RΩ(1)
true

Induction Step:
eq(gen_0':s4_0(+(n7_0, 1)), gen_0':s4_0(+(n7_0, 1))) →RΩ(1)
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) →IH
true

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
eq(0', 0') → true
eq(0', s(X)) → false
eq(s(X), 0') → false
eq(s(X), s(Y)) → eq(X, Y)
rm(N, nil) → nil
rm(N, add(M, X)) → ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) → rm(N, X)
ifrm(false, N, add(M, X)) → add(M, rm(N, X))
purge(nil) → nil
purge(add(N, X)) → add(N, purge(rm(N, X)))

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
rm :: 0':s → nil:add → nil:add
nil :: nil:add
add :: 0':s → nil:add → nil:add
ifrm :: true:false → 0':s → nil:add → nil:add
purge :: nil:add → nil:add
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_nil:add3_0 :: nil:add
gen_0':s4_0 :: Nat → 0':s
gen_nil:add5_0 :: Nat → nil:add

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:add5_0(0) ⇔ nil
gen_nil:add5_0(+(x, 1)) ⇔ add(0', gen_nil:add5_0(x))

The following defined symbols remain to be analysed:
rm, purge

They will be analysed ascendingly in the following order:
rm < purge

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
rm(gen_0':s4_0(0), gen_nil:add5_0(n516_0)) → gen_nil:add5_0(0), rt ∈ Ω(1 + n5160)

Induction Base:
rm(gen_0':s4_0(0), gen_nil:add5_0(0)) →RΩ(1)
nil

Induction Step:
rm(gen_0':s4_0(0), gen_nil:add5_0(+(n516_0, 1))) →RΩ(1)
ifrm(eq(gen_0':s4_0(0), 0'), gen_0':s4_0(0), add(0', gen_nil:add5_0(n516_0))) →LΩ(1)
ifrm(true, gen_0':s4_0(0), add(0', gen_nil:add5_0(n516_0))) →RΩ(1)
rm(gen_0':s4_0(0), gen_nil:add5_0(n516_0)) →IH
gen_nil:add5_0(0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(13) Complex Obligation (BEST)

(14) Obligation:

TRS:
Rules:
eq(0', 0') → true
eq(0', s(X)) → false
eq(s(X), 0') → false
eq(s(X), s(Y)) → eq(X, Y)
rm(N, nil) → nil
rm(N, add(M, X)) → ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) → rm(N, X)
ifrm(false, N, add(M, X)) → add(M, rm(N, X))
purge(nil) → nil
purge(add(N, X)) → add(N, purge(rm(N, X)))

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
rm :: 0':s → nil:add → nil:add
nil :: nil:add
add :: 0':s → nil:add → nil:add
ifrm :: true:false → 0':s → nil:add → nil:add
purge :: nil:add → nil:add
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_nil:add3_0 :: nil:add
gen_0':s4_0 :: Nat → 0':s
gen_nil:add5_0 :: Nat → nil:add

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
rm(gen_0':s4_0(0), gen_nil:add5_0(n516_0)) → gen_nil:add5_0(0), rt ∈ Ω(1 + n5160)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:add5_0(0) ⇔ nil
gen_nil:add5_0(+(x, 1)) ⇔ add(0', gen_nil:add5_0(x))

The following defined symbols remain to be analysed:
purge

(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol purge.

(16) Obligation:

TRS:
Rules:
eq(0', 0') → true
eq(0', s(X)) → false
eq(s(X), 0') → false
eq(s(X), s(Y)) → eq(X, Y)
rm(N, nil) → nil
rm(N, add(M, X)) → ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) → rm(N, X)
ifrm(false, N, add(M, X)) → add(M, rm(N, X))
purge(nil) → nil
purge(add(N, X)) → add(N, purge(rm(N, X)))

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
rm :: 0':s → nil:add → nil:add
nil :: nil:add
add :: 0':s → nil:add → nil:add
ifrm :: true:false → 0':s → nil:add → nil:add
purge :: nil:add → nil:add
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_nil:add3_0 :: nil:add
gen_0':s4_0 :: Nat → 0':s
gen_nil:add5_0 :: Nat → nil:add

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
rm(gen_0':s4_0(0), gen_nil:add5_0(n516_0)) → gen_nil:add5_0(0), rt ∈ Ω(1 + n5160)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:add5_0(0) ⇔ nil
gen_nil:add5_0(+(x, 1)) ⇔ add(0', gen_nil:add5_0(x))

No more defined symbols left to analyse.

(17) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

(18) BOUNDS(n^1, INF)

(19) Obligation:

TRS:
Rules:
eq(0', 0') → true
eq(0', s(X)) → false
eq(s(X), 0') → false
eq(s(X), s(Y)) → eq(X, Y)
rm(N, nil) → nil
rm(N, add(M, X)) → ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) → rm(N, X)
ifrm(false, N, add(M, X)) → add(M, rm(N, X))
purge(nil) → nil
purge(add(N, X)) → add(N, purge(rm(N, X)))

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
rm :: 0':s → nil:add → nil:add
nil :: nil:add
add :: 0':s → nil:add → nil:add
ifrm :: true:false → 0':s → nil:add → nil:add
purge :: nil:add → nil:add
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_nil:add3_0 :: nil:add
gen_0':s4_0 :: Nat → 0':s
gen_nil:add5_0 :: Nat → nil:add

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
rm(gen_0':s4_0(0), gen_nil:add5_0(n516_0)) → gen_nil:add5_0(0), rt ∈ Ω(1 + n5160)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:add5_0(0) ⇔ nil
gen_nil:add5_0(+(x, 1)) ⇔ add(0', gen_nil:add5_0(x))

No more defined symbols left to analyse.

(20) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

(21) BOUNDS(n^1, INF)

(22) Obligation:

TRS:
Rules:
eq(0', 0') → true
eq(0', s(X)) → false
eq(s(X), 0') → false
eq(s(X), s(Y)) → eq(X, Y)
rm(N, nil) → nil
rm(N, add(M, X)) → ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) → rm(N, X)
ifrm(false, N, add(M, X)) → add(M, rm(N, X))
purge(nil) → nil
purge(add(N, X)) → add(N, purge(rm(N, X)))

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
rm :: 0':s → nil:add → nil:add
nil :: nil:add
add :: 0':s → nil:add → nil:add
ifrm :: true:false → 0':s → nil:add → nil:add
purge :: nil:add → nil:add
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_nil:add3_0 :: nil:add
gen_0':s4_0 :: Nat → 0':s
gen_nil:add5_0 :: Nat → nil:add

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:add5_0(0) ⇔ nil
gen_nil:add5_0(+(x, 1)) ⇔ add(0', gen_nil:add5_0(x))

No more defined symbols left to analyse.

(23) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

(24) BOUNDS(n^1, INF)